This paper presents results of the development of an acoustic device to be utilized as a duct termination with variable reflection coefficient. This study is motivated by the idea to experimentally evaluate the probability of instability of a thermo-acoustic system where combustion acts as an active acoustic element, and this termination acts as a passive acoustic element that can be configured to a desired value of the reflection coefficient at the upstream side of the flame and burner for lab-scaled physical modelling of, for instance, domestic boilers. This termination consists of a cylinder containing a stack of truncated hollow cones with narrow gap in between and a telescopic tube. The gap between the adjacent cones, and sound-absorbing fibrous material (“Acotherm”) placed in the cavity of these cones produce a low reflection coefficient in the frequency range between 40 and 800 Hz. Longitudinal displacement of these cones inside the cylinder generates a reflection coefficient with magnitude ranging from 0.2 to 0.9. The telescopic tube with an adjustable length (between 0.85 - 1.38 m) allows to achieve a wide range of phases of reflection coefficient. The steps taken to optimize the design and performance of this termination in presence of flame are presented here.
Saxena, V., Kojourimanesh, M., Kornilov, V., de Goey, P., & Lopez Arteaga, I. (2021). Designing an acoustic termination with a variable reflection coefficient to investigate the probability of instability of thermoacoustic systems. Paper presented at 27th International Congress on Sound and Vibration, ICSV 2021, Prague, Virtual, Czech Republic.
Comments